TU Munich TU Munich
  • Home
  • News
  • Events
  • About us
  • Team
  • SAB
  • Research
  • Publications
  • Partners
  • Jobs
  • Contact

DynamicEarthNet Challenge

DynamicEarthNet Challenge

Earthvision Virtual Workshop together with the CVPR Conference have set out two challenges for the event´s edition of this year. The DynamicEarthNet Challenge proposed in conjunction with DLR, TUM and Planet aims to stimulate innovation in spatio-temporal machine learning to improve the development of models without the necessity for large-scale annotations, which is often not available in practice. It will award the winners with some fellowships of the Beyond Fellows program of the AI4EO Future Lab at the Technical University of Munich.

The challenge is centered around modeling multi-temporal land cover changes (with few or no training labels) from Planetscope and Sentinel time series data.

Challenge Start: March 1, 2021

Challenge Deadline: June 1, 2021

Take a look here for further details, send your proposal and join our scientific team!

Prev Post
Next Post

Related Articles

Welcome Professor Bamber!
By Munich
October 20, 2021

Welcome Professor Bamber!

READ MORE
Welcome Professor Borges Oliveira!
By Munich
October 20, 2021

Welcome Professor Borges Oliveira!

READ MORE

Recent News

  • The Earth under the Microscope in Deutsches Museum
  • The First AI4EO Symposium of the Future Lab
  • Registration to AI4EO Symposium 2022 is open
  • upcoming: next AI4EO Lab Talk 23 September 2022
  • Melting Glaciers in times of Global Climate Change

Contact us

International AI Future Lab
Ludwig-Bölkow-Campus
Willy-Messerschmitt-Straße 1
85521 Taufkirchen

Mail: ai4eo@tum.de
Tel: +49-89-289-22643
Fax: +49-89-289-23202

Information

  • News
  • Team
  • Research
  • Partners
  • Jobs
  • About us
  • Contact us

Twitter feed

International AI Future Lab on AI4EO Follow

International AI Future Lab on Artificial Intelligence for Earth Observation @TU_Muenchen, @BMBF_bund funded

Avatar
Retweet on Twitter International AI Future Lab on AI4EO Retweeted
Avatar Xiaoxiang ZHU @xiaoxiang_zhu ·
16 Jan

Interested in multimodal and #hyperspectral #RemoteSensing? check our #MDAS benchmark dataset @Zhu_XLab recently published with @ESSD_journal: https://essd.copernicus.org/articles/15/113/2023/
Data: https://mediatum.ub.tum.de/1657312
Code: https://zenodo.org/record/7428215#.Y8UlWHaZOhE
A collaboration with @DLR_de @GFZ_Potsdam #AI4EO

Reply on Twitter 1614931652874014723 Retweet on Twitter 1614931652874014723 14 Like on Twitter 1614931652874014723 64 Twitter 1614931652874014723
Avatar International AI Future Lab on AI4EO @ai4eo_de ·
13 Dec

Check the work of our lab @Zhu_XLab about audiovisual learning by @koheidler @MouLichao @xiaoxiang_zhu and our collaborators!

Konrad Heidler @koheidler

Check out our paper on the topic, out now at
https://www.sciencedirect.com/science/article/pii/S1569843222003181 (2/2)

Reply on Twitter 1602718245122965507 Retweet on Twitter 1602718245122965507 2 Like on Twitter 1602718245122965507 4 Twitter 1602718245122965507
Retweet on Twitter International AI Future Lab on AI4EO Retweeted
Avatar Zhu Lab @zhu_xlab ·
22 Nov

Take a look at our recent paper by @gawlikowskij @PWJEbel @xiaoxiang_zhu et al on how clouds affect #EarthObservation downstream applications. #AI4EO https://twitter.com/PWJEbel/status/1594977731309191169

Patrick Ebel @PWJEbel

Curious how clouds affect remote sensing applications, such as land cover classification? @gawlikowskij, Michael Schmitt at @unibw_m, @xiaoxiang_zhu and me provide an analysis and interpretation of the effects of cloud coverage!

Check out https://ieeexplore.ieee.org/document/9956865

Reply on Twitter 1595147461970259968 Retweet on Twitter 1595147461970259968 1 Like on Twitter 1595147461970259968 5 Twitter 1595147461970259968
Load More...
Legal Disclaimer | Privacy policy